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ABSTRACT

The determination of periodic edge waves along a straight infinite beach

can be formulated as a 2-dimensional eigenvalue problem for a generalized

wedge. A least squares boundary collocation method for computing the lower

discrete eigenvalues is described, with an error estimate for the least

eigenvalue. Numerical examples are presented.
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N' SIGNIFICANCE AND EXPLANATION

Computational eigenvalue problems for unbounded domains often present

* difficulties in execution. Thus it is of interest to demonstrate the

viability of the boundary collocation method for problems on unbounded domains

for which few analytic results are known.

For demonstration the Stokes-Ursell edge waves for general bottom

profiles are examined. Even though other methods are available for

computation of these eigenvalues, the flexibility of the present method might

be an advantage in technical problems. It should also be applicable to

different problems on semi-infinite domains.
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EDGE WAVES BY BOUNDARY COLLOCATION

L. Reichel and P. Chapman

1. Introduction

The aim of this paper is to describe a computational method for deter-

mining traveling edge waves along a straight infinite beach with a cylin-

drical, not necessarily plane bottom./Assuming the waves are periodic along

the shore line (the z-axis), this problem can be reduced to a 2-dimensional

eigenvalue problem on a generalized wedge, D, in the x,y-plane, see Ursell

(9]. The top boundary of the wedge, representing the (horizontal) free

surface of the fluid, is the positive x-axis. The other boundary of the wedge

is below the positive x-axis and represents the sea bottom, see Figure 1.1.

The y-coordinate of the sea bottom, y = b(x), is assumed to be a smooth

(C 2 ) function of x, with b(O) 0, b(x) < 0, x > 0 and with a finite,

negative Lim Mx)

S y

..
z

1 1

y=b~x

Figure 1.1

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
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The traveling waves of interest, see Ursell [91, p. 83, are

*(x,y,z,t) : cos(kz)(xy)e 
i  (1.1)

where # and the real constant p satisfy

A xy - * on V, (1.2)

_m. .: w2# on top: YO, x)O, 0.3)
dn kq

dn- 0 on bottom: yb(x), x>0, (1.4)

E :- jj(IxVl + *2) dS - . (1.5)

V

n denotes the outward unit normal, g is the gravitational acceleration

and k is the same real constant as in (1.1). The dimensionless problem

eigenvalue is denoted by w2 . Ursell [9] studied the case of a straight

bottom (i.e. b(x) - cx ) and found a finite, simple, discrete, spectrum with

eigenfunctions * of finite energy E (equation 1.5), and a continuous

2
spectrum (of non-finite energy) above a cut off value of w

Ursell (9] further observed that the number of eigenpairs of the problem

(1.2-1.5) increases as the interior angle of the wedge decreases. A recent

analysis based on shallow water theory of Chapman [1] suggests that this angle

is also a controlling parameter when the bottom is not straight.

In the present work the central interests are the following

1. To study the use of a Boundary Collocation Method (BCM) in the

computation of eigenpairs.

2. To investigate the role of the wedge angle as a dominant parameter.

-2-



A

The attraction of the BCH lies in its applicability to a variety of domains,

its ease of programing, and its conceptual simplicity. The method reduces

the computational problem to a 1-dimensional problem. Murashima et al. (4]

call the BCM the charge simulation method (CSM) and state "The charge

simulation method [...] is often used in some part of Electrical Engineering

as an efficient way for solving Laplace's equation. The CSM, is not

considered to be straight forward because contour points [= collocation

points] and source points [ singular points of the basis functions] must be

determined by trial and error." We eliminate the guessing in the CSM by

presenting a strategy for selecting collocation points when the set of basis

functions is given. We will choose the number of collocation points so that

an overdetermined system of equation is obtained. This we solve by a Galerkin

method, i.e. the boundary collocation method to be described is a Galerkin-

coliocation method. For each set of basis functions the determination of

eigenpairs is quite rapid, and we carry out the computation for several

systematically chosen sets of basis functions. A simply computable error

estimate for the lowest eigenvalue reveals which set of basis functions yields

best accuracy. This makes it unnecessary for the user to guess good source

points. The idea to iteratively choose source points has previously been

Si_ advocated by Mathon and Johnson (21 for Dirchlet problems. The number of

distinct source points we need is, however, much smaller than in the examples

5. in [2]. This is important since the computational effort increases rapidly

with the number of distinct source points, see section 2.

This paper is organized as follows: Section 2 contains the description

of the BCM, Section 3 contains numerical examples, and in Section 4 we derive

an easily computable error estimate for the least eigenvalue. The

eigenproblem under consideration has previously been studied by methods of

geometrical optics, see Meyer [31 and Shen et al. (8].

1 -3-
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2. A Boundary Collocation Method

We first describe the allocation of collocation points for a given set of

eigenfunctions. This description is slightly more general than needed for the

numerical examples in sections 3, because we want generalizations to other

problems to be simple. Presently, we only can motivate the allocation

* heuristically, but numerical examples show that the allocation is appropriate.

Let ((x, Y))£t.I be a point set exterior to D U aD. For an arbitrary

point (x,y), let (rj, e ) be the polar coordinates for (x-xi y-yj),

j - 1(I)t. We will approximate the eigenfunctions of (1.1)-(1.5) by linear

combinations of the functions

K0 (r j ) , K1 (r )cos(e j ) , K1 ( r )sin ( j , K2 ( r )co s ( 2 8

(2.1)

..•..,K p(r )cos(pO.), Kp(r )sin(pe8), j111)£,

for some integer p > 0. K(r) denotes the jth order modified Bessel

function of the 2nd kind. Any linear combination of functions (2.1) satisfies4.-,

(1.2) and (1.5). Conditions (1.3) and (1.4), we impose at collocation points

on aV.

We turn to the allocation of collocation points. We are led to the

allocation strategy by regarding approximation of analytic functions f(w) on

regions 0 in the extended complex plane C. The complement of 0, Oct is

assumed to be open, bounded, simply connected, and have a smooth boundary

30. Let {wI I be a finite set of distinct points in nc' and
j J=1 c

approximate f(w) by a linear combination of the functions

4--

"1 , (w-w ) - I , (w-wj) -2 , ... , (w-w.) -Pi , 1(I)£. (2.2)

,Nj
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The linear combination is to be determined by interpolation at points on 39.

Regard w I , .2 ',w, unit point charges, which generate a potential

lnlw-w 1._ Let O(w) be the charge distribution on aQ of total charge

1, so that a(w) makes 3A an equipotential curve in the presence of the

point charges at wj. It is known that m = p£+1 interpolation points
c m

( collocation points) {W k on an for determining a linear combination
wk k- c

of functic:a (2.2) should be equidistributed w.r.t. O(w), i.e. wI is

c
arbitrary and w J > 1, should satisfy

c

fk+l0(w)Idw = kf1(1)m-1, (2.3)cm'

. wk

where integration is done along an in postive direction. For details, see

Reichel (61. O(w) can be determined by solving

q+ f tnlw-wto(w)tdw =j tnlw-w.l, w e an
an j=1 I

(2.4)

nf 0(w)ldwl = I
where q is a constant also to be determined, see [6) or [7]. Let F(w) be

-e a conformal map from 0 to the complement of D U 3D. Let
c

,. + iy:= F(w.) j=1(11£.

F can be continued to a bijective map on 9 U an, and we let the collocation

rc c
points (x y j1(1)m be defined byJ, j

xc + = F(W j 1(1)m. (2.5)

S' . "- - - - "",". J -%*** -" - ,*., ,-'** . -"-" 0"'. ," - S. - . ",' " -"' .."-"-''"- -"- ."'-"-". "-... J* . ~ -w.' .-. * %V. .
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We motivate this choice by the invariance of the potential under conformal

mapping, and by the fact that for some constants c * 0, independent of

r.,

K0 (r.) + cln(r ) as r. + 0,

K (r.)e -p + c r. -ei jas r. + 0, p = 1,2,3,...,
p 3 p I

which shows that the functions (2.1) behave essentially like harmonic

functions as r 4 0, j=1(1)1. For harmonic functions the same allocation as

for analytic functions is suitable.

The application to problem (1.1)-(1.5) permits some simplifications.

c cWhen allocating the collocation points (x., y.), we approximate the

generalized wedge D by a wedge D with straight sides and with vertex at

the origin. Let the interior angle of D at the origin be Ow. Turn D to

be symmetric w.r.t. the x-axis and so that D has the negative x-axis in its

interior. A conformal mapping F which maps the exterior of the unit circle

on the complement of D is explicitly known

z = F(w) =_ _(! 2-0
W(2.6)

The charge density function U(w(s)) we seek in the form of a trigonometric

polynomial of degree n. When 3 is a circle then this approximation of

"(w(s)) can be determined in O(n £n(n)) operations, see (5] especially

lemma 2 for details. We choose the angle of D so that properly turned, D

approximates D well near the origin. Having determined the collocation

points on aD, we map them onto aV by some mapping which approximately

preserves distance from the vertex.

4 -6-
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In the computations we have chosen the number collocation points, m, as

2-3 times n, the number of basis functions (2.1), i.e. n = (2p + 1)1. The

allocation is good in the sense, that doubling the number of collocation

points has in no case when checked changed the order of magnitude of the error

in the eigenvalues.
.-.

We now turn to the computation of eigenvalues and eigenfunctions with a

given set of basis functions (2.1). First we allocate m collocation points

as described, and make sure one point is placed at the vertex. The vertex

point is regarded as 2 points, since we will impose both conditions (1.2) and

(1.3) at the vertex. Scale the basis functions (2.1) so that

max1K s(rj)I = 1 Vs,j, where the maximum is taken over all collocation

points. Denote these scaled functions by fl(xy), f2 (xy),...,fn(xy), and

-. orthonormalize n (x,y) with respect to the inner-product

m

(f,g) I f(xj,y.) g(xj,yj), (2.7)j - J

where we sum over all collocation points, and .- denotes the outward normal

derivative w.r.t. V. We denote the orthornormalized functions by f1(x,y),

f2(x,yj,...,f (x,y) • We seek a linear combination
.4

n
0 (x,y) = akfklX,Y) (2.8)

k= 1

2
and constants w which satisfy (1.2) and (1.3) at the collocation points.

This gives rise to an overdetermined generalized eigenvalue problem, which we

T
symbolically write, with a (all a2' ,an)T

-- 1a ,a - as

~-7-
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T. I - 6. -- - 1 ~ n ' ti K ,-

dO 0m/2 eq. from top nodes

' 2
4a ) a= w a (2.9)

dP0 m/2 eq. from bottom nodes

n n

Multiply (2.9) by the transpose of the orthonormal left hand side matrix. The

resulting system we write as

U2a = Aa 2 = 1/w2 (2.10)

(2.10) is an ordinary eigenvalue problem with an n x n matrix A. We can

regard equation (2.10) as Galerlein equations obtained by using the test
1 2

functions 3n ' T-n'"" - and inner-product (2.7).
3n -in F2a

Solving eigenproblem (2.10) yields eigenvalues j and corresponding

eigenvectors a. Ca1if a2j ...,anj ). We obtain approximate eigenvalues

=I/i2, to problem (1.1>-(1.5) and corresponding approximate

2 qeigenfunctions

n
p P (x,y) I ak kfK(Xy). (2.11)

2 -2 -2 -2
Enumerate the so that w1 ( w2 ( ... ( w n In section 4, we derive the

,' following error estimate for ;2: Let w2 be the true least eigenvaluew1.1  b thetru leat egenvluefor

(1.1)-(1.5), and let 3Dt denote the part of 3D which coincides with the x-
'VS

axis. Let aDb 3D - t . Let s denote arc length. Then

1 b D t d~d lP(S),y(s)) 2
I2wi - w21 1 i] ds + -('P(x(s)' y(s )l) 2 1c t (s) Ids + (2.12

2

dPl(x(s),y(s)) 2
+ ds + (P1 ((x(s),y(s)) 2 1Cb(s)lds, (2.13)

3 DVb

%-8-
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.' where
t.' 1 

d 1  -1-E j (-I '-(x(s),y(s)) - w(1t (x(s),y(s)))(d (x(s),y(s))) - ds, (2.14)

t d'p dIP
Ct) d - (x(s)'y(s))( S (x ( s )'y (s ) ) )- ld s "  (2.15)

The parameter t also denotes arc lenth, which is measured from the vertex

along Vt in the integrals (2.12), (2.14), and from the vertex along abt. b

in (2.13), (2.15). Especially, t = 0 corresponds to the vertex.

The error estimate (2.12)-(2.15), we can use for the determination of a

good allocation of source points (xj, yj). In all computed examples, we

obtained good accuracy with only one source point (xily), i.e. in (2.1) we

have I = 1, and we restrict the description to this case. Generalizations

to £ distinct source points are immediate, but we note that the effort to

determine them increases rapidly with £; the determination of i source

points yields a 2£-dimensional nonlinear optimization problem.

Since we need not find the best allocation of (x1,yI ), a good placement

suffices, we can use a simple method for its determination. Choose (xi,y i )

arbitrarily but fairly near the vertex at D. Determine the collocation

"' points, solve the eigenvalue problem (2.10), and evaluate the error estimate

(2.12)-(2.15). Repeat for the remaLiing 4 points in the 5-point-stencil, with

points

{(xly), (x1+h,y1), (X1 -h,yl), (xlfy,+h), (xlyl-h)). (2.16)

h > 0 is selected so that the whole stencil is exterior to . if the

error estimate is smallest at one leg of the stencil, say at (xl-h,yl), then

move the stencil so that (x1-h,yI) becomes its midpoint and compute the

-9-

V... . . . . . . .
3:. - . .



error estimate at stencil points where not known. This way the stencil is

moved in the plane until the smallest error estimate is obtained at its

center. In this case the stencil is shrunk, i.e. we replace h by h/2.II Repeat until the stencil size is smaller than some prescribed 6> 0.

-10-
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3. Numerical Examples

-2
In the examples we ddnote the computed eigenvalues by wK, k-l,2,3,...

;2 -2 -2
ordered so that w1 < w2  w w3 ( .... The number of collocation points, we

denote by m, the number of basis functions by n. For wedges with straight

sides, we let n := m/2. Increasing the ratio n does not change the ordern

of magnitude of the error, which shows that the distribution method for the

collocation points is appropriate. For wedges with curved sides we chose

- = 3, since the allocation of nodes for such wedges is somewhat arbitrary;
.4 n

we do not compute the conformal map from the exterior of the unit disk to the

exterior of the wedge, but use instead an explicitly known map from the

exterior of the unit disk to the exterior of a wedge with straight sides.

Again, increasing the ratio M does not change the order of magnitude of the
n

error.

Let a denote the interior angle at the vertex of D. All computations were

initialized by choosing the source point (xy 1) = 2

setting m and n to the smallest values in the tables below and letting

h defining the stencil (2.16) be 1/2 for example 3.1 and 1/4 for the other

examples. The stencil was moved as described in the end of section 2 until

the estimated error was smallest at its center point. This point we below

call computed source point, and at this point we computed the eigenvalues for

larger values of m and n also.

The discretization replaces the original eigenvalue problem (1.1)-(1.5)b-

by an n-dimensional one that has n eigenvalues, which are approximated by

-2 -2
w = wj , j = 1(I)n. All eigenvalues of the discrete problem need not
j j,n'

correspond to eigenvalues of the continuous problem (1.1)-(1.5), and we need a
-2

simple criterion to determine how many of the w. j = 1(1)n, to accept as,n'

approximations of eigenvalues to the continuous problem. Our criterion is

.:.. - 11 -
'p

..> ,:. :,., ..> .....~~~~~~~~~~~.......:...:......:....... ....-.......:.:,...............-:. ....:.:..... .:..:............... .....
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S,-2
based on the dependence of the w on n. For some integer k, depending

J,n
"2

on the shape of D but independent of n, the w j 1(1)k, converge

as n increases, as far as this can be judged by numerical computations with
-2 ~2

increasing but finite n. The convergence of the differences w - w, n
j-1,n j7 n

as n -, J - 2(1)k, is as fast as the convergence of the w;2, j (1)k.,n"

2
For j > k, the w ,n  decay with n, but limit values cannot be discerned,

-2 -2 -2 -2only that w Wk j > k. The pairwise convergence wj+1,n to

0 as n + -, j ) k is very pronounced, however. This suggests that the

-2.. ... k smallest computed eigenvalues wj ,n J I (I)k, approximate eigenvalues

of the continuous problem. Numerically we determine k by only regarding

-2 ~2
differences wJ-l, n - wj n  for increasing values of n. We choose k to be

the smallest integer such that

~2 -2
wk-l,n -wk n + 8 < 0, n +

.; ,. ~2 k-2,n k, n+,vj k

-2 -2
w j-1,n j,n J>k

where 8 is any constant < 0. We note, in passing, that the 'eigenvalues'

w. , j > k are more sensitive to changes in computational details, like

selection of source point, than the ;2 1 4 j 4 k. All computations were

done on a VAX11/780 in double precision arithmetic, i.e. with 12 significant

digits.

Ex. 3.1. We illustrate the numerical method for a domain with known

'1 eigenvalues. Let D be a wedge with straight sides and an interior angle of

2
15 degrees. Then w = sin (" (21-1)), 1-1,2,3, are the eigenvalues found by

1' 12

Ursell [9], and the computations also identified precisely 3 converging

-2
eigenvalues by the criterion described above. The error estimate for w1  is

-12-
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defined by (2.12)-(2.15). The table holds for the computed source point

(X 1 1  (-6.351857, 2.30591).

J-2 2 -2 -2 2 ;2w2,

m 1 .-wI I error est. for wI  4w221 w3-w3

*, -. -7 -44 I-2

4 22 11 1.9010 - 8  8.410 1.010 -4 3.410

J, 42 21 5.2 *o10- 10  1 1 0 8 . 10 7I. 8 10- 3

o, The computations suggest that there are no other eigenvalues than those found

by Ursell (9]. a

To generate various bottom shapes, a (Pl1 P2 1 P3 )-family of curves is

used and for convenience defined parametrically in the complex plane. For

t( 0,

-ip1

x(t) + iy(t) : (x1(t) + iyl(t))e * P2

5t

X(t) : Cu + 11 - P3 "u) (3.1)

yl(t) : S'v - §(I + W-V),

where c :- 2 cos 2( ), s :- sin(21) u :- tanh( 5),

v : tanh (I - tan('-)t-), w :- (p3 -1)tan(!) - 1. This curve forms an

angle p, with the positive x-axis at the origin, x(0) = y(O) - 0. The

parameter P2  is a scaling factor introduced to make t approximately equal

to arc length for the t-interval under consideration, while P3  determines

the shape of the curve before it asymptotes a straight line (as t+-m).

* Ex. 3.2. We compute eigenvalues for a region with a lower boundary

defined by a curve (3.1) with p1 - j2' p2 = 1, and p3  4, see figure

.1

-13-
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3.1. The inscribed (straight) wedge with angle j is used when allocating

the collocation points.

-4-

-1

Figure 3.1

k, the number of convergent eigenvalues wv is 2, but we also show w asjw3, n a

being a typical spurious eigenvalue of the continuous problem. The computed

source point is (xl,y1 ) - (-0.69500, 0.18459).

--- 2 ,-2 ,,2 ,,3 ,,2 -2
sm n W error est. for w w2 w2  w3-w2

32 11 0.305559 9.4.10 .4  0.89902 1.67 0.77

62 21 0.305434 2.0.10 .4  0.86034 1.26 0.40

92 31 0.305430 3.7.10 - 5  0.85668 1.14 0.28

4..- For comparison, we note that the eigenvalues of the inscribed (straight) wedge

4-2are those of example 3.1. with sin(jj) to 1 significant digit. U

Ex. 3.3. We compute eigenvalues for the region shown on figure 3.2. The

lower boundary is defined by a curve (3.1) with p1 MI, P2 = P3= 2. The

(straight) wedge with angle 1 indicated is used for allocation of9

-14-
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collocation points.

Figure 3.2

The computed source point is (xl,Y 1 ) - (-1.74628, -0.0797). Two converging
-2 -2

egenvalues Ww 2  can be identified, but we also show the smallest spurious
V w

-2

eigeFigure 3.2

-2 -2 -2 -2 -2 -2
m n w I  error est. for w I w2 w3  w 3 -w 2

-2
32 11 0.29001 1.310 0.8194 1.58 0.76

62 21 0.28893 2.0.103 0.7746 1.12 0.34

92 31 0.28888 2.8.10 - 4  0.7731 1.06 0.29

The straight wedge on figure 3.2 has eigenvalue sin() - 0.342 and

sin( ) - 0.866, see Ursell [9]. After rounding to I correct decimal

-2
sin(M) and w agree. e

-15-
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4. Error Estimate by Perturbation

The particular problem considered can be embedded in a slightly wider

class. Suppose D is a domain which is a generalization of a wedge that is

I" semi-infinite, with two smooth (C2 ) boundaries, a 'top' (t) and a 'bottom'

(b), which intersect only at the origin, making there a finite non-zero angle

with each other. These boundaries extend to infinity.

The slightly more general eigenvalue problem is: find numbers w2 and

functions # e c in 5 such that

A# = # in D (4.1)

d - 0 on the bottom x = xb(s), (4.2)
dn

2
dn w f on the top, x - 4(s), (4.3)dn

where n(s) is the (continuous) unit outward normal to the boundary, and s

is arc length. Also # satisfies a finite energy condition (1.5), at most

(x) + o(Ixl-(1+6 1), 8>0, lxI + - in V. (4.4)

For these problems it can be readily shown, by using standard manipu-

lations together with Green's Theorem, that the eigenvalues w are real and

the eigenfunctions #i +k belonging to different eigenvalues w , wk arek k

orthogonal, in that both the boundary arc length integral

t * ds 0, j k, (4.5)

and the area integral
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k +$J#k +Vj V#kI ds - 0, j k k (4.6)

vanish. Because the relation

.' 2 J (IV ,;Il 2+ a s
2 ~~~ 2_________

2 - ( (4.7)

2

between eigenpairs w , * also holds, it follows that the eigenvalues are

all positive, so the notation w2 is justified.
j

An alternative formlation of the problem for the least eigenvalue now

follows. Minimize the functional

2(*) - IV II2 + *2 dS (4.8)

over all e c2  in f, which satisfy the normalizing relation

. * 2 d =, (4.9)

.

which vanish in P sufficiently rapidly that the two integrals (4.8, 4.9) are

V defined.

The calculus of variations then reveals that a minimizing function

satisfies

in V

- 0 on the bottom (4.10)
dn

4 on the topdn
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where ) is the Lagrange multiplier. By virtue of the preceeding discussion

)A is also the value of I at the minimum, and hence the least eigenvalue.

A Perturbation Analysis

The formulation (4.8-4.10) above allows some qualitative statements to be

made for problems in which the boundaries of D undergo perturbations. The

aim is to estimate the change in the least eigenvalue for a prescribed

perturbation.

Let the top boundary perturbation t' be described by an equation

X(s) = xtls)- £t(s)n(s) (4.11)

Ct (0) - 0 (4.12)

% . where the boundary perturbation function Ct  is everywhere positive or zero,

and together with its derivative, is small

* l i , I, t C £ ( ,
i ds

where

Ift = sup If(s)I.

* Denote as V' the region interior to the perturbed top and the original

4 -bottom.

Suppose w2 is the least eigenvalue for the problem (4.1-4.4) on D

with corresponding eigenfunction *, and let 2 be the least eigenvalue for

the problem on D'. Since V C V, one would anticipate that n 2 w 2 the

proof that this is indeed the case follows.

Use as a trial function to estimate n2 the original eigenfunction *,
which must first, however, be renormalized. Thus one has the formula

-18
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N fIt,* 2dast, W ft(0-C .)2 da (I + o(C2)

t - r -2 w22)s t (l + o(C2)) (4.13)

" (1-2w 2 ft et# ds)( + 0(62))

after using the first term in a local Taylor expansion of * on t to

estimate its value on t', the boundary condition (4.4), and after observing

that the arc length elements on t' and t satisfy
Sate AM det(1 + o(,,, )

by the assuned properties of t

So the variational result (4.8) yields

2 ID.(#)
N

- R (4.14)

'W 2w:' (#)).!.( 2- Npp

The quantity La-D (#) can be estimated in the limit CO

-IV-_ f t (tV#12 + 2 ) C d + 0( 2 1

(4.15)

.
((_)2 + (1v 4)#2 ) d ad + o(62)

:- so that on combining the three formulae (4.13, 4.14, 4.15) it follows that

. -19-
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22(1-21t(A)2 ds_ (2 2)j *22 do + o(2 ))(1-2w2 Jt 2cds)-(1+0o(c 2 ))
w t do t t t i

(4.16)

2 -2 ( 2 -22 2 2W (1-W'.t ds Cdo W -w )# Ec ds)(140(C

Provided 0 < 2 1 (as is the case in the computed examples) the factor

(w - w2 ) is positive, and because t ) 0 by hypothesis, it follows that

l2 w. (4.17)

For a bottom perturbation which yields a perturbed region D C D let

X(s) xb(a) - Cb(s)n (4.18)

define the perturbed bottom b', where Cb  has properties similar to those of

Ct, Ithat is* dC

I~b1, do bl < L Cb 0, Cb(O ( 0 (4.19)

As a trial function 4 to estimate the perturbed least eigenvalue a

of D' the corresponding eigenfunction # of V is used. Then the

variational formulation requires that

a ( ' " Igo(W

: (Ip(*) - IV_.,(*)) (4.20)

M (W ID -_D,( )

Hence the result
22

Q 2 w (4.21)

again follows.
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Thus, in summary, when D' is obtained from V by either (or both)

boundary perturbation(s) of the type(s) described, (and hence D' c 0), the

2 2
least eigenvalues Al , w of D' and V, respectively, satisfy

22
12  w (4.22)

The converse is also true, since the boundary perturbation process described

is reflexive. That is, if D' 2 D, then
2 2
Q > w. (4.23)

While the results (4.22, 4.23) can be used for a priori estimation using

known solutions as comparison, the relationship between the least eigenvalues

of D, and D' (obtained by perturbation) can be refined. First suppose
2

0' 2 D and the eigenfunction * corresponding to the least eigenvalue w

of V is known. Extend the eigenfunction * to D' by constructing a

preliminary extension #I which coincides with f in V and has t

constant along any given normal n' to t', b', taking the value on that

normal equal to the value of # where the normal intersects t. (Multi-

valuedness is excluded by the smoothness assumptions on £t' £b). Then 0I

2
can be modified to produce a suitable trial function 0 e C in V' by

introducing large curvature _-) in suitably small transverse neighborhoods

* dn
V.- of t, b. Such a process can be carried out so that, for any desired m

I = I (#)(1 + O(cm)), (4.25a)
S D

'.. and

d. , I + o(CU)), = + o(Em)), on t, and b. (4.25b)

Having constructed this 0, one notes that its normalization is essentially

unchanged since

-21-
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2 2 2J 2 ds', J * ds1 ( + O(C 2 (4.26)

by the properties of the perturbation.

Since D' V the inequality (4.23) requires that

2 2w

and the minimum principle (4.8) then demands that

2 112

or (4.27)

2 2 2
0 - w ID(0) + I _0- 1- ( •

But equation (4.25) and the definition of 0 show that

2
10) - W = 0(Cm ) (4.28)

so the basic inequality (4.27) becomes essentially

0 2__ 2 < 1v(0). (4.29)

In the limit as E+O, the right hand side of the last inequality can be

computed by

I I'-D(0) =t (Iv l2 + b2tldst + J Iv0I2 + b 2 ) (4.30)

dO
where VOA are evaluated in the interior of (D' -V ). Here n vanishes

by construction, or £* = 0,

- it+ b~s) + 02) Ic*Ids*I (I + 0(C2))

(4.31)

., = + 2 )I, Ids*} (I + o(C2 ))

O '+ b(ds'

wwhere the suffix * denotes t or b as appropriate.

Thus, in the situation described the results (4.27), (4.31) can be

summarized as
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0 2 2
0 4 - w ( 10,_D(*) (4.32)

* and I D'_(W can be approximated by the { I factor in equation (4.31).

One can proceed analagously to estimate the relation between the least

2
eigenvalues of D, D' when Dc_ D and the eigenpair w , * belonging

to D are known. It will follow that a result similar to the above (4.32)

holds, namely
-: .. 2 2

0 4 w - a I4_D,() (4.33)

after a calculation which is similar to the one used in developing the

inequality (4.32), but different in detail.

When D' is neither wholly interior to D, nor contains it, a two step

procedure is carried out to relate the least eigenvalue w2  of V to that

of D'. Denote as V" the region D U (V'-V), and use as a trial function

in both D * and D' the eigenfunction 0 of D extended by the rules

previously described: that is, where t', b' fall outside 0, extend 4 as

a constant along normal lines to these boundaries, taking a value on any such

line equal to the value of * where that line strikes t, or b. At

boundaries t, b, f is adjusted to satisfy smoothness conditions or boundary

conditions as necessary, but in regions whose transverse extent is arbitrarily

small in comparison with C. Noting that V*.D D, 0" D V', one deduces the

pair of inequalities

0 < 2 - 2 < I

.55. (4.34)

0 4 2 20A -w 1 (*)

o--

2
.' .from the properties of the trial function, where A is the least eigenvalue

of D*. From these inequalities (4.34) it follows that a conservative
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estimate is

.. 0 < 1w2 - 21 'W + I W (4.35)

and the last two integrals can be approximated as

I W)+ I W,( = §tA)2 + *2 l Ids + fb[(do) + *2 b~lds (4.36)

" .- The inequality (4.35) and the evaluation (4.36) form the basis of the

computable error estimate.

An Error Estimate

In estimating the error in the computation of the least eigenvalue, the

premise is that the small residuals in

:'. . d b(S) (4.37)

dn b

and

an _ X dt(s) (4. 38)

2
computed on b, t respectively, the boundaries of D suggest X, are an

eigenpair of the least eigenvalue of a region V', which is a perturbation

of V . (By construction, f is a solution of equation (4.1) in a region

including D). Knowledge of the * field, and the location of b, t enable

the relative location of b', t' to the established, and hence (using the
1~2 ,21 2

results of the perturbation analysis) a bound on 10 - A 2 where ji is the

true least eigenvalue of V.

In the case of the bottom boundary, for example, for the given * field

it is necessary to determine the nearby curve b'

x = s)n(s) (4.39)

on which

V• n' = 0 (4.40)

j, -24-
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%

where j' = n is the local unit outward normal to b. When the curvature

of b is not large, s and n coordinates may be regarded as Cartesian, the

boundary condition becomes approximately

d4dcb d4
+ - = 0 (4.41)

ds ds dn

on b', or, approximately (equation (4.37))
.%

deb -d /d4 (4.42)
ds b ds x()

A Thus the ultimate expression is

Sb(S -Jo % ds, (4.43)

allowing for the boundary condition Eb (0) 0. Similarly, on the top

boundary one requires

0 -2

-d'e (4.44)

_1!4~1 + '(C) +'*

,- ds d , o(, + dn x*)(',+o,

. 2 2), s

(assuming the calculations are good enough that V is close to 2 so

that taking the local approximate values

ds I ds x'
: -t(4.45)

dn' x+e dn Ix

(U it follows that

_ t Jsdb/4 ds (4.46)
t 0 aX(s)

, . -25-
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The results (4.43, 4.46) can then be used in the formulae (4.35, 4.36) to

estimate the error in the computation. (The formulae (4.43) and (4.46) are

constructed in the knowledge that d# b vanishes only in the limit IxI+m,do t,b

when * is the eigenfunction corresponding to the least eigenvalue.)
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